Python is one of the most versatile and beginner-friendly programming languages in the world. From web development and automation to data science and AI, Python forms the backbone of modern software development.
This syllabus is designed as a structured learning roadmap, not just a list of topics. It focuses on building strong fundamentals, clear thinking, and professional-level coding skills.
This guide covers:
- Python fundamentals from scratch
- Core programming concepts
- Advanced Python features
- Career-oriented applications
- Interview and professional preparation
Beginner Level — Python Foundations
1. Introduction to Python
- What is Python
- History and features of Python
- Applications of Python
- Python vs other languages
- Installing Python
- Python versions
- Running Python programs
- Python interactive shell
- Writing your first Python program
2. Python Basics & Syntax
- Python keywords
- Identifiers
- Indentation and code structure
- Comments (single-line and multi-line)
- Variables and naming conventions
- Data types overview
- Type checking using
type() - Type conversion
3. Input, Output & Operators
- Input using
input() - Output using
print() - Formatted output
- Arithmetic operators
- Relational operators
- Logical operators
- Assignment operators
- Operator precedence
4. Control Flow
Conditional Statements
ifif-elseelif- Nested conditions
Looping Statements
forloopwhileloop
Loop Control
breakcontinuepass
Intermediate Level — Core Python Concepts
5. Strings
- String creation
- Indexing and slicing
- String methods
- String formatting
- Escape characters
- Immutability
- String operations
6. Lists
- Creating lists
- Indexing and slicing
- List methods
- Nested lists
- Iterating through lists
- List comprehensions
7. Tuples
- Creating tuples
- Tuple operations
- Tuple unpacking
- Difference between list and tuple
- Use cases
8. Sets
- Set creation
- Set methods
- Set operations
- Difference between set and list
- Use cases
9. Dictionaries
- Dictionary creation
- Accessing elements
- Dictionary methods
- Iterating dictionaries
- Nested dictionaries
- Real-world use cases
10. Functions
- Defining functions
- Function parameters
- Return values
- Default arguments
- Keyword arguments
- Variable-length arguments (
*args,**kwargs) - Scope (local and global)
- Lambda functions
11. Modules & Packages
- Importing modules
- Built-in modules
- Creating custom modules
- Python packages
__name__ == "__main__"- Virtual environments
Advanced Level — Professional Python
12. File Handling
- Reading files
- Writing files
- File modes
- Working with CSV files
- JSON handling
- Context managers using
with
13. Exception Handling
- Types of errors
tryandexceptelseandfinally- Multiple exceptions
- Custom exceptions
- Debugging techniques
14. Object-Oriented Programming (OOP)
- Classes and objects
- Constructors
- Instance and class variables
- Methods
- Encapsulation
- Inheritance
- Polymorphism
- Abstraction
- Magic methods (
__str__,__len__, etc.)
15. Advanced Python Concepts
- List, set, and dictionary comprehensions
- Iterators and generators
- Decorators
- Closures
- Shallow vs deep copy
- Memory management
- Garbage collection
16. Python Standard Library
mathrandomdatetimecollectionsitertoolsfunctoolsossys
17. Testing & Debugging
- Assertions
- Unit testing
- Writing test cases
- Testing frameworks overview
- Debugging tools
- Logging
Specialized & Career-Oriented Topics
18. Data Structures & Algorithms with Python
- Time and space complexity
- Arrays and strings
- Stacks and queues
- Linked lists
- Trees
- Graphs
- Dynamic programming
- Greedy algorithms
- Recursion and backtracking
19. Automation & Scripting
- File and folder automation
- Web scraping basics
- Task scheduling
- Command-line tools
- Automation projects
20. Python for Web Development
- Backend fundamentals
- REST APIs
- JSON and HTTP
- Web frameworks overview
- Request–response cycle
21. Python for Data & AI
- NumPy basics
- Pandas basics
- Data cleaning
- Basic data visualization
- Working with datasets
22. Performance & Optimization
- Code optimization
- Profiling
- Efficient data handling
- Best practices
- PEP 8 guidelines
- Type hints
23. Real-World Projects
- Beginner mini projects
- Automation projects
- API-based projects
- Data-driven projects
- End-to-end Python applications
24. Interview & Professional Topics
- Common Python interview questions
- DSA problem solving
- Design patterns
- Code optimization
- Packaging and distribution
- Resume and project preparation
25. Python Programming Playlist
---More structured Python learning guides and hands-on roadmaps coming soon.
